United at last: the tuberous sclerosis complex gene products connect the phosphoinositide 3-kinase/Akt pathway to mammalian target of rapamycin (mTOR) signalling.
نویسندگان
چکیده
The molecular interplay between the phosphoinositide 3-kinase (PI3K) pathway and mammalian target of rapamycin (mTOR) signalling in the control of cell growth and proliferation has been the subject of much interest and debate amongst cell biologists. A recent escalation of research in this area has come from the discovery of the tuberous sclerosis complex gene products, tuberin and hamartin, as central regulators of mTOR activation. The PI3K effector Akt/protein kinase B has been found to directly phosphorylate tuberin and is thereby thought to activate mTOR through inhibition of the tuberin-hamartin complex. The many recent studies aimed at defining the molecular nature of this revamped PI3K/Akt/mTOR pathway are reviewed here. The collective data discussed have laid the groundwork for important new insights into the many cancers caused by aberrant PI3K activation and the clinically challenging tuberous sclerosis complex disease and have suggested a possible means of treatment for both.
منابع مشابه
Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملThe Role of Mammalian Target of Rapamycine Signaling Pathway in Central Nervous System Cancers: A Review
Mammalian mechanistic target of rapamycine (mTOR) is a conserved serine/threonine kinase in the cellular PI3K/Akt/mTOR signaling pathway. This pathway is modified by cellular alterations such as level of energy, growth factors, stresses, as well as the increased environmental level of cancerous cytokines. In general, increase of this kinase protein function is seen in various types of cancers, ...
متن کاملA complex interplay between Akt, TSC2 and the two mTOR complexes.
Akt/PKB (protein kinase B) both regulates and is regulated by the TSC (tuberous sclerosis complex) 1-TSC2 complex. Downstream of PI3K (phosphoinositide 3-kinase), Akt phosphorylates TSC2 directly on multiple sites. Although the molecular mechanism is not well understood, these phosphorylation events relieve the inhibitory effects of the TSC1-TSC2 complex on Rheb and mTORC1 [mTOR (mammalian targ...
متن کاملTuberous Sclerosis Complex Gene Products, Tuberin and Hamartin, Control mTOR Signaling by Acting as a GTPase-Activating Protein Complex toward Rheb
BACKGROUND Tuberous Sclerosis Complex (TSC) is a genetic disorder that occurs through the loss of heterozygosity of either TSC1 or TSC2, which encode Hamartin or Tuberin, respectively. Tuberin and Hamartin form a tumor suppressor heterodimer that inhibits the mammalian target of rapamycin (mTOR) nutrient signaling input, but how this occurs is unclear. RESULTS We show that the small G protein...
متن کاملLoss of tuberous sclerosis complex-2 function and activation of mammalian target of rapamycin signaling in endometrial carcinoma.
PURPOSE The involvement of phosphatase and tensin homologue deleted on chromosome ten (PTEN) in endometrial carcinoma has implicated phosphatidylinositol 3-kinase signaling and mammalian target of rapamycin (mTOR) activation in this disease. Understanding the extent of mTOR involvement and the mechanism responsible for activation is important, as mTOR inhibitors are currently being evaluated in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemical Society transactions
دوره 31 Pt 3 شماره
صفحات -
تاریخ انتشار 2003